4.1 Maximum and Minimum Values

Consider the function $f(x)=\sin (x)$ for x in $[0,2 \pi]$. The plot of $f(x)=\sin (x)$ is below.

We can see that the hightest point on the graph of the function is the point $\left(\frac{\pi}{2}, 1\right)$ and the lowest value is $\left(\frac{3 \pi}{2},-1\right)$. We will say that the absolute maximum occurs at $f\left(\frac{\pi}{2}\right)=1$ and the absolute minimum of the function occurs at $f\left(\frac{3 \pi}{2}\right)=-1$. Note: The maximum and minimum values are the \mathbf{y} coordinates.

Definition: Let \boldsymbol{c} be a number in the domain D of a function f. Then $f(c)$ is the

- Absolute maximum value of f in D if $f(c) \geq f(x)$ for all x in D.
- Absolute minimum value of f in D if $f(c) \leq f(x)$ for all x in D.

An absolute maximum or minimum is sometimes called a global maximum or minimum. Notice that the absolute maximum and absolute minimum considers that entire domain of the function. But now what if we consider a function that has many maximum and minimum values in its domain. For example consider the following graph of function g.

Function \boldsymbol{g} has an absolute max at $\boldsymbol{x}=\boldsymbol{f}$ and an absolute min at $\boldsymbol{x}=\boldsymbol{c}$. If we only consider \boldsymbol{x}-values near \boldsymbol{b} (that is we restrict the domain to be the interval (a, c)), then $g(b)$ is the largest value in the restricted domain and we call this a local minimum value of g. Similarly, $g(e)$ would be called a local minimum value of \boldsymbol{g} because $\boldsymbol{g}(\boldsymbol{e}) \leq \boldsymbol{g}(\boldsymbol{x})$ for all \boldsymbol{x} near \boldsymbol{e} in the restricted domain (d, f).

Definition: The number $f(c)$ is a

- Local maximum value of f if $\mathrm{f}(\mathrm{c}) \geq \mathrm{f}(\mathrm{x})$ when \boldsymbol{x} is near c.
- Local minimum value of f if $\mathrm{f}(\mathrm{c}) \leq \mathrm{f}(\mathrm{x})$ when x is near c.

A "local" max or min is sometimes referred to as a "relative" max or min.
Note: Near c means that it is true on some open interval containing c. Notice that $g(f)$ is both an absolute maximum and local maximum, whereas $g(d)$ is only a local maximum.

Example: Consider the function $f(x)=x^{3}$. Find the absolute/local maximum and minimum.

This function has no maximum or minimum values. There are not absolute or local maximum or minimum values.

Please study example 4 on page 277.

The Extreme Value Theorem: If f is continuous on a closed interval $[a, b]$, then f has an absolute maximum value $f(c)$ and an absolute minimum value $f(d)$ for numbers c and d in the interval [a, b].

To use the Extreme Value Theorem (EVT) we need the following conditions to be true:

1. The function is continuous.
2. The function is defined on a closed interval.

Consider the following graphs: the domain of $f(x)$ is $[a, b]$.

Max at \boldsymbol{c}, \min at \boldsymbol{d}

Max at \boldsymbol{a}, \min at \boldsymbol{b}

We would not be able to use the Extreme Value Theorem in the following graph:

This function is not defined on a closed interval therefore the EVT does not apply.

The Extreme Value Theorem is an "existence" theorem. It tells us when there is a maximum or minimum but it does not tell us how to find the maximum or minimum, but we can find them by looking for local extreme values on the graph of a function.

If you analyze the past graphs that we have made, it appears that at the maximum and minimum points the tangent lines are horizontal and therefore have a slope of zero (0). This means that wherever the maximums or minimums occur, say at $\boldsymbol{x}=\boldsymbol{a}$ and $\boldsymbol{x}=b$, then $f^{\prime}(a)=0$ and $f^{\prime}(b)=0$.

Fermat's Theorem: If f has a local maximum or minimum at \boldsymbol{c}, and if $f^{\prime}(c)$ exists, then $f^{\prime}(c)=0$.
We must be careful when using Fermat's Theorem. Just because $f^{\prime}(a)=0$, that does not guarantee that there is a max or min at a. Fermat's Theorem suggests that we look for extreme values of f at the numbers, \boldsymbol{c}, where $\boldsymbol{f}^{\prime}(c)=\boldsymbol{0}$ or where $f^{\prime}(c)$ does not exist. These numbers are called critical numbers.

Definition: A critical number of a function f is a number \boldsymbol{c} in the domain of \boldsymbol{f} such that either $\boldsymbol{f}^{\prime}(c)=0$ or $f^{\prime}(c)$ does not exist. A function can have more than one critical number.

Example: Find the critical number(s) of the function. $f(x)=\frac{x-1}{x^{2}+4}$
Find $f^{\prime}(x)$ by using the Quotient Rule, then set $f^{\prime}(x)=0$ and solve for \boldsymbol{x}, the critical numbers.
$f^{\prime}(x)=\frac{\left(x^{2}+4\right)(\mathbf{1})-(x-1)(2 x)}{\left(x^{2}+4\right)^{2}}=\frac{x^{2}+4-2 x^{2}+2 x}{\left(x^{2}+4\right)^{2}}=0 \Rightarrow x^{2}+4-2 x^{2}+2 x=0 \Rightarrow-x^{2}+2 x+4=0$
Use the quadratic formula to solve: $x=\frac{-2 \pm \sqrt{4-4(-1)(4)}}{-2}=\frac{-2 \pm \sqrt{20}}{-2}=\frac{-2 \pm 2 \sqrt{5}}{-2}=\mathbf{1} \pm \sqrt{5}$ Since this function is defined for everywhere $(-\infty, \infty)$ then both solutions for \boldsymbol{x} are critical numbers. If you look at this function on your graphing calculator (viewing window: $x[-10,10] x$-scale: $1, y[-1,1] y$-scale: 1) you should see that when $x=1+\sqrt{5}$ there is a maximum and when $x=1-\sqrt{5}$ there is a minimum.

We can also rephrase Fermat's Theorem to be:
If \boldsymbol{f} has a local maximum or minimum at \boldsymbol{c}, then \boldsymbol{c} is a critical number of \boldsymbol{f}.
The Closed Interval Method [a, b]: To find the absolute maximum or minimum values of a continuous function f on a closed interval $[a, b]$:

1. Find the values of \boldsymbol{f} at the critical number of \boldsymbol{f} in the open interval (a, b).
2. Find the values of f at the endpoints of the closed interval $[a, b]$.
3. The largest values from steps 1 and 2 are the absolute values; the smallest of these values are the absolute minimum values.

Example: Find the absolute minimum and/or maximum values of f on the given interval. $f(x)=x-\sqrt[3]{x}$ on the interval $[-1,4]$

1. Find the critical numbers of the function. $f^{\prime}(x)=1-\frac{1}{3}(x)^{-\frac{2}{3}} \Rightarrow 1-\frac{1}{3 \sqrt[3]{x^{2}}}=0 \quad 1=\frac{1}{3 \sqrt[3]{x^{2}}}$
$3 \sqrt[3]{x^{2}}=1 \quad \Rightarrow \quad \sqrt[3]{x^{2}}=\frac{1}{3} \quad \Rightarrow \quad x^{\frac{2}{3}}=\frac{1}{3} \Rightarrow x=\left(\frac{1}{3}\right)^{\frac{3}{2}} \Rightarrow x=\frac{\sqrt{3}}{9}$ critical number
2. Find the values of the function at the critical numbers and at the endpoints of the interval.

$$
\begin{aligned}
f\left(\frac{\sqrt{3}}{9}\right)=\frac{\sqrt{3}}{9}-\sqrt[3]{\frac{\sqrt{3}}{9} \quad \cdots} & =-\frac{2 \sqrt{3}}{9} \quad f(-1)=-1-\sqrt[3]{-1} \cdots=0 \quad f(4) & =4-\sqrt[3]{4} \\
& \approx-.3849001795 & \approx 2.412598948
\end{aligned}
$$

The absolute minimum occurs at $\boldsymbol{x}=\frac{\sqrt{3}}{9}$ and the absolute minimum value is ≈-0.385. The absolute maximum occurs at $\boldsymbol{x}=\mathbf{4}$ and the absolute maximum value is ≈ 2.413.

